MODELS and SIMULATIONS 8 ABSTRACTS

PLENARY 1: Mieke Boon – "" Thursday, March 15th, 9:30-10:30

On the term engineering sciences, readers may have different understandings. Commonly, emphasis on the engineering part of the term. In this paper, focus will be on the science part – that is, on research practices that perform scientific research in the context of technological applications. The engineering sciences as scientific fields in many respects resemble other natural sciences, but are also very different in a number of ways. The similarity consists in aiming to scientifically understand phenomena, which involves scientific modelling in connection with the investigation of the phenomena in experiments and computer simulations. A salient difference, however, is that the epistemic aim of investigating phenomena is not firstly scientific theories, but rather knowledge for how a phenomenon is created, controlled, manipulated, prevented or optimized through natural or physico-technological circumstances. Scientific models of phenomena, therefore, must enable and guide model-users in their reasoning about the phenomenon, which is why Knuuttila and I have emphasized the notion of scientific models as epistemic tools. This paper aims at an overview of various aspects of scientific models that typically emerge in this context, for which examples of scientific models in chemical engineering and materials science will be given. The line of reasoning will be to first point out how concepts of (natural or physico-technological) phenomena are related to design-concepts. Next, epistemic practices of modelling phenomena (in view of technological applications) will be analyzed in terms of their apparent ontological and epistemological presuppositions. Finally, it will be argued that all this can be summarized in terms of a methodology (i.e., a schema) for the analysis and construction of scientific models in the engineering sciences.

PLENARY 2: Michael Weisberg – "Confirmation Theory for Idealized Models" Friday, March 16th, 9:00-10:00

PLENARY 3: Michela Massimi – "What Scientific Models Are for" Friday, March 16th, 17:45-18:45

Scientific models have long been known to involve abstractions and idealisations, and not to offer necessarily veridical or accurate representations of the target system. Much has been written on models' idealizations and two main trends have clearly emerged. Some philosophers of science have taken the highly abstract and idealized nature of scientific modelling as the sign that all models are fictional—or better, that any scientific model (no matter whether its target system is real, hypothetical, or simply false) engages in a fictional make-believe game. Other philosophers have taken the highly abstract and idealized nature of scientific modelling as a springboard for reevaluating the explanatory importance of falsehoods in science (and, occasionally, for rethinking the aim of science in terms of non-factive understanding for example). My main task is to offer a third way of thinking about scientific modelling, going beyond the dichotomy fictionalism or felicitous falsehoods. I suggest thinking of what goes on in scientific modelling along the lines of some kind of physically conceivability. I clarify what the notion of physical conceivability involves and shed light on how—embedded into different kinds of models—it can deliver important modal knowledge about what might be the case.

PLENARY 4: Peter Mättig – "The Role and Dynamics in Models Particle Physics" Saturday, March 17th, 9:00-10:00

Today's particle physics is described by the so-called Standard 'Model' (SM) to an amazing precision. Still there is an overwhelming consensus among physicists that the SM must be seen as part of a more encompassing theory at higher energies leading to new phenomena. A plethora of beyond the SM (BSM) models has been devised predicting special signatures to be observed. In spite of intense experimental work, searches for these were as yet futile. The talk will discuss the role of models in the actual research, analysing differences between experimentalists and theorists. Furthermore we will consider if traditional and new epistemic and pragmatic values of theory choice also play a role for model preferences. These issues will be related to model dynamics, i.e. how they are affected by measurement. In particular it is discussed, how results like the Higgs discovery and the non – observation of BSM effects change the status of models in particle physics. These results lead both experimentalists and theorists to move in the direction of model – independent studies. In case of experiments the increasing importance of data driven classifications of the measurements will be illuminated.

SESSION ABSTRACTS

Thursday, March 15th 11:00-13:00

1. SYMPOSIUM: SCALE MODELS in ENGINEERING

Symposium Abstract: Scale models constitute an understudied category of models in current debates in philosophy of science, which rather focus on mathematical or computational models. The aim of this symposium is to re-evaluate the epistemic functions of scale models with a specific focus on the practice of modelling in engineering. Specific topics to be dealt with are: the notion of design within the context of engineering and in relation to the epistemic value of scale models; the nature of the targets of scale models; and the role of similarity in the construction and evaluation of scale models.

16aSterrettScale models, invariants, and similarity

Histories of scale modeling contain episodes in which success is suddenly achieved, after many failed attempts (Sterrett 2005; Sterrett 2017a). Yet, these abrupt advances are not a matter of chance, but arise when a practitioner understands the notion of invariance relevant to the phenomenon being modeled. That's the key to successful scale models, and accounts for why unsuccessful ones were unsuccessful. While the relevant notions of invariance in different disciplines (e.g., Structural Mechanics, Hydrodynamics, and Geology) arose at different times, there was also, in parallel, the development of more general approaches to similarity methods in physics. Many of the physicists who wrote about similarity are familiar historical figures: besides Newton and Galileo, there are well-known physicists of the nineteenth century: Stokes, Helmholtz, Rayleigh, and Lorentz, for instance. This intellectual effort in physics culminated in the notion of *physically similar systems* published in *The Physical Review* in 1914, in a paper by the physicist Edgar Buckingham. Unlike many others, Buckingham did not rely upon having the actual equations governing the phenomenon of interest; instead he used dimensional equations, providing a formulation that shows the considerable power of physically similar systems. Developing a point made in (Sterrett 2009 and Sterrett 2017b) I will explain the basis, founded in the logic of mature quantitative sciences, for similarity between a scale model and what it models. In doing so, I aim to show that both Weisberg's and Pincock's accounts make similarity methods in engineering seem much less well-founded in physics than they actually are.

16bPincockConcrete scale models and essential idealizationA scientific model is essentially idealized when the model must be specified using a falsestatement in order for the model to fulfill its intended purpose. This paper argues for theprevalence of essentially idealized concrete models, with special emphasis on scale models thatare built at a smaller or larger spatial scale than their intended target systems. These modelsrange from traditional models of ships or airplane wings to more elaborate models of complexsystems such as the San Francisco Bay. In all such cases, essential idealizations enter in whenthe model is used to predict or explain features of the intended target. One source of thesedistortions is the nature of the materials involved, as when scale effects of water are relevant tothe phenomenon being modeled. This paper concludes by considering some of the means thatscientists and engineers employ to cope with their idealized models, especially when their aimis to obtain accurate predictions through an examination of their model.

16c	Sánchez-Dorado	Not only size matters. Scale models and judgments of
		similarity

The aim of this paper is twofold. First, I argue that an approach in iHPS (integrated History and Philosophy of Science), which looks into historical episodes in science and engineering, can be particularly insightful for the debate about the epistemic value of scale models (Sterrett 2017; Weisberg 2013). I use the documented history of the foundation of the Waterways Experimental Station in the U.S. (WES) as a case in point. Before, and still after, the foundation of the WES in 1929, there were fruitful disagreements within the U.S. Army Corps of Engineers about the kind of the knowledge that scale models could provide in comparison with numerical – and later on, computational - models (Robinson 1992). Second, I argue that the notion of "judgments of similarity" can be particularly helpful to analyse the epistemic value of scale models. Using historical reports of the construction of the Mississippi Basin Model (1943-1970s) and the San Francisco Bay Model (1953-1970s), I show how, in the practice of scale modelling, engineers made constant judgments about the similarity relation between the models under construction and the phenomena represented (U.S. Army Corps 1963; Foster 1971; Weisberg 2013). Some of these judgments of similarity concerned the application of standardized methods of physically similar systems, some others the visual qualities of the models, and some others the role of distortions and idealizations in the epistemic success of the practice of scale modelling.

			1	U
16d	Poznic	Architectural Mo	deling: Interplay of	Designing and
		Representing		

This paper discusses architectural models, whose use is connected to two goals at least: designing and representing. These two goals can be accounted for with two different modeling relations between vehicles and targets. In the instance of designing the target is adjusted to the vehicle and in the instance of representing the vehicle is adjusted to the target of modeling. In previous research I showed that models in bioengineering involve both of these modeling relations and that these models can be accounted for with an indirect view of representation (cf. Poznic 2016). In debates about models and representation in science, indirect views of representation are prominently discussed (Giere 1988; Godfrey-Smith 2006; Weisberg 2007; Frigg 2010). The question is whether these debates can be connected to architectural models and whether these models represent in the same way as scientific models. Namely by being indirectly related to their targets. In another way, architectural models function differently than

scientific models because architectural models are not used to study natural phenomena but rather to design buildings. This paper proposes to conceptualize the relation between model and building as a bipartite relation: first, the model stands in a relation of representation to a plan of the building. In this sense the model represents something, namely a plan of the building. Second, the plan and the building are standing to each other in a relation of designing. So the intuition that the model represents something can be retained. Yet, the target of the representation relation is not the building but the plan of the building.

2. OPACITY and EPISTEMOLOGY of SIMULATIONS

32 Humphreys	Reducing Representational Opacity			
This paper explores the role of represen	tations in computational processes applied to large data			
sets that use machine learning methods	for pattern recognition. It uses the distinction between			
transparent and opaque representations	s to argue that apparently opaque representations are			
common in particular types of deep	neural nets. Although such opaque computational			
representations seem to require reliab	vilist accounts of the knowledge produced by those			
computational models, it is possible in	some cases to transform opaque representations into			
transparent compositional representat	ions. I conclude by considering some difficulties			
associated with the interpretation of thes	se transformed representations.			
28 Formanek	Modal troubles with epistemic opacity			
Epistemic opacity is defined in terms of	f knowledge and modality. I will make this definition			
more explicit by employing the JTB-a	account of knowledge. I then argue that the focus of			
analysis should lie on the justificatory	condition. Furthermore, the modal limits imposed on			
justification, namely human or in-practi	ce modality are shown to be restrictive and I argue that			
on the standard reading justification rath	her requires in-principle or logical modality. I conclude			
by outlining a theory of justification (reli	ablism) for computer simulations which while retaining			
human commitment is not dependent on	human modality.			
60 Creel	Transparency in Complex Computational Systems			
Scientists depend on complex computat	ional models that are often ineliminably opaque, to the			
detriment of our ability to give scientifi	c explanations and detect artifacts. Some philosophers			
have suggested treating opaque models	instrumentally, but the computer scientists developing			
new strategies for increasing transparence	cy are right not to find this satisfying. Instead, I propose			
an analysis of transparency as having the	ree forms: transparency of the algorithm, the way that			
algorithm is written in code, and the wa	y that code is run on particular hardware and data. This			
allows us to target the kind of transpare	ncy most useful for a given task.			
17 Lehtinen	Testing the tools; Computer simulations in the design			
	of research methods			
This paper discusses a particular way	in which computer simulations are used to test the			
performance of their research tools. Statisticians employ (usually some version of Monte Carlo)				
simulation to compare the performance of several estimators at the same time in an artificial				
simulated environment, testing which estimator is the best at capturing the 'truth' under various				
different configurations of causal influences. The epistemic credibility of this method is based				
on being able to know how the possible causal influences would affect the data, if they were				

operative.

3. MODELS in ECONOMICS

73	Knuuttila and Morgan	Simple - And Thick: Abstract Models in Economics				
We	argue that the conventional philos	ophical notion of abstraction as omission does not do				
just	ice to the constitution of abstract	models, and their construction processes. Apart from				
omi	itting known details, modelers also b	ring in various kinds of ingredients to their models, and				
as a	result abstract models are thick in	theoretical, conceptual, empirical, and formal content.				
We	analyse this thickness of abstract mo	odels through some examples from economics, although				
our	analysis applies also to models in ot	her disciplines				
58	Sperry	Complexity Economics: When Equilibrium Explanations Fail				
Equ	ilibrium explanations are highly a	bstract explanations of dynamic systems through an				
equ	ilibrium state. Said explanations ren	nove all causal information to reveal a system's deeper,				
und	erlying structure, which ought to ir	crease our understanding. Indeed, economists rely on				
equ	ilibrium explanations to understand	why an asset's price converges towards equilibrium as				
sup	ply matches demand. Yet there is	s mounting empirical evidence that non-equilibrium				
dyn	amics are prevalent, and that equilibrium	rium explanations have little application to real markets.				
I in	troduce computational methods to	study specific causal mechanisms behind equilibrium				
beh	avior. I conclude that causal inform	nation increases our understanding of markets beyond				
equ	equilibrium explanations.					
3	Nebel	A Puzzle about Economic Explanation				
Eco	nomists use two different models to	explain why it is that firms are capable of pricing above				
marginal cost the Cournot and Bertrand duopoly models. They accept both models as good						
exp	explanations of the phenomenon, but the two models contradict themselves in various important					
way	vs. This paper presents the puzzle an	d then offers five possible solutions to that puzzle from				
vari	ous philosophers of science and phi	losophers of economics.				
55	Jhun	Modelling Complex Phenomena: Econometrics as a				
		Case Study				
Ac	areful investigation of history and	practice reveals that econometric models are often not				
meant to be strictly speaking representational. Vet they are expected to yield causal						
und	understanding by identifying the mechanisms underlying economic behavior. This may seem					
nar	paradoxical: I argue that we can discharge these difficulties by paying attention to how					
eco	econometricians incorporate method into their models. These observations will have					
imr	lications more generally for mode	eling complex phenomena, in particular more recent				
dev	elopments in multi-scale modeling					
401	eropinentes in matti seure modering.					

4. MODELS in PHYSICS

20	Jacquart	Observing the Invisible: Dark Matter & Computer				
		Simulations				
Our	Our collaboration between astronomers and philosophers attempts to search for the universe's					
mis	missing dark matter, investigating the hypothesis that some of it resides in dark matter galaxies.					
In this talk, I address questions related to epistemic warrant: how do astrophysicists blend						
observation, simulation, and theorizing to warrant inferences about such objects? I focus on the						
role computer simulations play in astrophysical inferences to provide an argument for how						
cha	chains of epistemic warrant work and contribute evidence in our dark galaxy hunt. This case					
prov	vides insight into understanding how	w computer simulations of complex phenomena add to				

observations themselves, and justify conclusions about the nature and behavior of the objects in				
theories.				
52 Elder	LIGO and Models as Mediators			
On September 14, 2015 the LIGO obse	prvatories detected gravitational waves for the first time.			
For a confirmed detection, a signal has	to be extracted from raw data and matched to a model-			
generated waveform representing a par	ticular merger. Based on this match, it is concluded that			
a binary black hole (BBH) merger occ	urred, and inferences are made about various properties			
of the black holes involved. In this pape	er I will investigate the recently developed techniques in			
numerical relativity used to model BI	3Hs for LIGO, drawing lessons about the relationship			
between theory, model, and data in the	LIGO detection runs.			
38 Chall	Particle Physics Model-Groups as Scientific Research			
	Programmes			
The framework of Lakatosian researc	h programmes, modified to accommodate the model-			
groups of particle physics, explains the	e model dynamics within the search for physics beyond			
the standard model in the Higgs sector.	At the moment, there is no evidence for BSM physics,			
despite a concerted search effort. The no	ption of scientific research programmes explains the way			
aspects of the periphery of a model-grou	p change as the available parameter space shrinks, while			
the hard core remains unaltered. I will u	se the Composite Higgs model-group as a case study for			
the adoption of this Lakatosian idea to particle physics.				
34 Pronskikh	Simulation study of epistemic democracy in big			
	science			
Division of labor in Big Science (for	or example, high-energy physics) has resulted in the			
emergence of separate discursive communities of instrument makers, experimentalists, and				
theorists that have developed separate discourses and epistemic strategies. Stratification of the				
communities in the context of theory-laden high-energy physics experiments has resulted in				
establishment of their epistemic hierarchy and subordination of epistemically disadvantaged				
communities to more epistemically pri	ivileged ones. In this work, drawing on the concept of			
epistemic democracy, I use simulation	s to argue that epistemic equality, which enables us to			
overcome the epistemic disunity in h	igh-energy physics experiments, is beneficial for Big			
Science.				

5. EPISTEMOLOGY and MODELS

51	Bursten	Against the Hierarchical View of Theories		
I ar	ticulate a widely-held view about int	ter-theory relations, which I call the hierarchical view of		
the	ories. I argue that this view is sl	hared by reductionism and emergence, and that the		
hier	rarchical view impoverishes philosop	phical accounts of inter-theory relations. By focusing too		
nar	rowly on the explanatory and pred	ictive work accomplished at individual or component		
levels, the hierarchical view excludes the epistemic contributions of the conceptual strategies				
employed to connect higher-level theories to lower-level ones. These strategies are an essential				
and as-yet ill-understood piece of architecture in the epistemology of science, and the				
hierarchical view has occluded them from analysis.				
39	Verreault-Julien	Learning and understanding with models: same same		
		but different?		

How to assess the epistemic contribution of idealized models is an enduring problem. Two proposals have been made: 1) we may learn from models (e.g. Grüne-Yanoff 2009) and 2) models may afford understanding (e.g. Kuorikoski and Ylikoski 2015). However, it is unclear whether learning and understanding are similar or whether they are, in fact, two different sorts of epistemic benefits. Using a distinction between reductionist and non-reductionist accounts of understanding (see Sullivan 2017), I show under what conditions learning and understanding may be similar or may differ. This in turn opens new avenues of research.

76	Henne	Der	norming	Causation:	the	model-based	theory	of
		cau	isation an	d norms				

Work on causal reasoning (Hitchcock and Knobe, 2009) and omissive causal reasoning (Henne, Pinillos, & De Brigard, 2017) shows that norms bias causal judgments such that abnormal events and omissions are more likely to be judged as causes relative to normal events and omissions. Another proposal is that reasoners represent possibilities that are consistent with comissive (Johnson-Laird & Khemlani, 2017) and omissive causation (Bello & Khemlani, 2015) and their related semantic terms. In four experiments, I show that norm bias causal judgments when reasoners have access to fewer possibilities but also that when they have access to fully explicit representations of causing or allowing model, norms do not significantly bias judgments.

	<u> </u>			<u> </u>		
48	Neuman and Danka	The	intimate	relationship	between	thought
		experi	iments and	simulations - o	do they prov	vide fresh
		know	ledge about	Nature?		

We construe the epistemological status of scientific thought experiments. We will show that it is not impossible for a scientific thought experiment to generate new knowledge, not possible to derive form the theory using logical methods. We present a certain type of computer simulation used by physicists as counter-example against the claim that thought experiments do not provide genuine, fresh knowledge about Nature. The assessment is based on Kant's view about the existence of predicates providing new knowledge, that are not empirical.

Thursday, March 15th 16:30-18:30

6. MODELS in CHEMISTRY and BIOLOGY

15	Price	The Landing Zone - Preparing Ground for Model			
		Transfer in Chemistry			
I pr	opose a new notion – the landing zo	one – in order to identify conceptual features that allow			
moo	delers to transfer mathematical tools	s across disciplinary boarders. Philosophical discussion			
ider	ntifies the transferable models a	s containing templates - functions, equations, or			
com	putational methods that are capable	of being generalized from a particular subject matter. I			
argu	ie that there are formal and conceptu	al conditions for their transfer. My paper presents a case			
study on a model in chemistry The Quantum Theory of Atoms in Molecules (QTAIM). I also					
argue a complete account of QTAIM's transfer of templates from physics requires this additional					
notion, landing zones.					
47	Bolinska and Gandier	Understanding protein function through multiple			
		models of structure: barriers to integration			
In c	In order to understand protein function, information from models of structure generated from				

In order to understand protein function, information from models of structure generated from different experimental techniques must often be integrated. We show that such integration sometimes takes the form of the undue influence of models of structure produced using one experimental technique on the interpretation of data from another. We argue that interpretation of data should instead take place with close attention to the experimental context in which it was generated, resulting in models that best exhibit features of the protein which that context is designed to showcase. Integration should take place only thereafter and should take the form of "integration that maintains pluralism" (Mitchell & Gronenborn 2015): information from each model should be integrated to inform understandings of protein function, while nonetheless retaining each model.

22	Bokulich	Using Models to Correct Data: Paleodiversity and the
		Fossil Record

Despite an enormous philosophical literature on models in science, surprisingly little has been written about data models and how they are constructed. In this paper, I examine the case of how paleodiversity data models are constructed from the fossil data. In particular, I show how paleontologists are using various model-based techniques to correct the data. Drawing on this research, I argue for the following related theses: First, the 'purity' of a data model is not a measure of its epistemic reliability. Instead it is the fidelity of the data that matters. Second, the fidelity of a data model in capturing the signal of interest is a matter of degree. Third, the fidelity of a data model can be improved 'vicariously', such as through the use of post hoc model-based correction techniques. And, fourth, data models, like theoretical models, should be assessed as adequate (or inadequate) for particular purposes.

42 Parkkinen Are model organisms like theoretical models?

Levy and Currie (2015) have recently argued against the view that theoretical models and model organisms are both forms of indirect representation by pointing out a difference in the justification of model-to-target inferences: model-target analogy in the former, empirical extrapolation in the latter. I argue that Levy and Currie's point about model organisms not being representations is true, but drawing the distinction with respect to justification strategies fails. Instead, I argue that the difference lies in whether the model is used as an inferential aid, or as a surrogate source of evidence.

7. MODELS in POLICY

44	Cuffaro and Kao	Employing Agent-Based Computer Simulations in				
		Developing Theories of Distributive Justice				
Rav	Rawls's `difference principle' (DP) is a principle for distributive justice which forms part of the					
bac	kbone of his conception of societal	I-level justice: Justice As Fairness. DP directs one to				
max	ximise the well-being of the least w	vell-off, and Rawls argues that it would be chosen by				
par	ties deliberating to decide on a social	contract. Restricted Utilitarianism replaces DP with the				
`so	cial minimum principle' (SP): whi	ch directs one to maximise average well-being but				
esta	blishes a fixed minimum below wh	ich no member of society may fall. Using agent-based				
con	nputational modelling, we examine a	rguments in the debate between defenders of JF and RU.				
36	MacLeod and Nagatsu	What does interdisciplinarity look like in practice:				
		Mapping interdisciplinary modeling and its limits in				
		the environmental sciences				
In this paper we take a close look at current interdisciplinary modeling practices in the						
environmental sciences, and argue for much closer attention to be paid to the nature of scientific						
pra	practices when investigating and planning interdisciplinarity. While interdisciplinarity is often					
por	portraved as medium of novel and transformative methodological work current modeling					

strategies in the environmental sciences are conservative, avoiding methodological conflict, while confining interdisciplinary interactions to a relatively small set of pre-existing modeling frameworks and strategies (a process we call crystallization). We argue that such practices can be rationalized as responses in part to cognitive constraints which restrict interdisciplinary work. The impact of such constraints on interdisciplinary practices are not yet so well understood. Further the crystallization of interdisciplinary modeling practices around a relatively finite set of frameworks and strategies, while contradicting somewhat the novelty goals many have for interdisciplinarity, makes sense when considered in the light of common disciplinary practices. These results provide cause to rethink in more concrete methodological terms what interdisciplinarity amounts to, and what kinds of interdisciplinarity are obtainable in the environmental sciences and elsewhere.

Friday, March 16th 10:30-12:30

8. SYMPOSIUM: MODELS and SIMULATIONS in SYSTEMATICS

Symposium Abstract: We analyze the roles of theoretical and empirical assumptions in models in systematics. We present an integrated historical philosophical analysis of a family of pre-Darwinian models of the natural system of relationships between organisms and species. We then analyze the role of evolutionary models in phylogenetic inference to make claims about the branching pattern of descent between species. Finally we analyze the problem of ignoring model assumptions in the case of current application of the multispecies coalescent model to species delimitation.

7a	Quinn	Models and Simulations in Systematics
7b	Novick	Models and Simulations in Systematics
7c	Hillis	Models and Simulations in Systematics

9. SYMPOSIUM: WHY SIMULATIONS ARE DIFFERENT

Symposium Abstract: In this symposium, we discuss the epistemic status of computer simulations (CS) to further the understanding of how CS can predict and explain the behavior of real-world systems using examples from high-energy physics. Challenging recent claims that CS and experiments are epistemically on par, we show aspects of verification and validation to bring out differences between CS and experiments. We argue that the knowledge gain that derives from CS is characterized by the uncertain inferences they promote and ask whether the focus on microlevel descriptions of CS might limit their explanatory power.

71a	Beisbart	Computer	simulation	in	experimentation	versus		
		computer s	imulation as	exp	eriment			
Are o	computer simulations experiments?	Are they at le	east epistemi	cally	on par with them	? These		
ques	tions are at the center of a lively del	bate in the p	hilosophy of	con	nputer simulation.	So far,		
the f	ocus has been on computer simulation	ons that are s	supposed to y	vield	approximate solu	tions to		
equa	tions from theories and that are	in this sens	e theoretical	ly r	notivated. But co	mputer		
simu	lations play a central role within expe	eriments too	, for instance	in p	article physics. In a	a recent		
pape	paper, Massimi and Bhimji have used such experiments to argue that computer simulations and							
expe	riments are epistemically on par. T	This aim of	this talk is t	to di	iscuss the view ta	ken by		
Mass	simi and Bhimji. The main thread o	f my criticis	m can be su	mma	arized in the sloga	n: That		
com	computer simulation is used in experimentation (broadly conceived) doesn't show it to be							
expe	riments or on par with experiment	ts. I start w	ith examples	s of	computer simulat	ions in		

experimental high-energy physics. My aim here is to identify the key tasks that computer simulations are supposed to fulfill. I then present the view by Massimi and Bhimji and discuss it in depth. I come to reject the claim that computer simulations are on par with experiments even in experiments from high-energy physics and present the alternative view that some computer simulations model experiments. My question then is how simulated experiments can complement real experiments. In the last part of the talk I focus on validation and try to show that validation may be used to bring out differences between experimentation and computer simulation.

71b Boge Computer simulations and uncertain reasoning

Computer simulations (CS) play an integral role in modern science. While it has sometimes been disputed that philosophizing about them can bring about any significant new insights – which may be correct to the extent that the epistemological issues arising in the context of CS are strongly connected to epistemological issues known from other contexts - there still remain some specific issues concerning the role and status of CS in actual research. Most importantly, views about what precisely CS are, epistemologically speaking, strongly contrast or even apparently contradict each other. In my talk, I will pursue two central aims: I will (i) consider two strongly contrasting views of simulations and demonstrate that these are ultimately complementary, not mutually exclusive, and both have their righteous place in actual scientific practice. The two contrasting views concern, in particular, the view of CS as arguments, developed in papers by Beisbart and Beisbart and Norton, and the view of CS as comparable to or epistemically on par with experiments, as defended notably by M. Morrison. I will then (ii) argue that the main 'epistemic thrust' of CS stems from the inferences they *promote*, not from the inferences that they (arguably) 'are'. These former inferences, as I will argue, constitute an instance of abductive rather than deductive reasoning, and the specific kind of abduction involved makes it understandable how CS can be both, a 'kind of experiment' and a 'kind of argument'.

71c	Grünke	Epistemic	status	of	simulations	and	the	role	of
		verification	n						

In the recent debates about computer simulations, many claims have been made about the epistemic status of computer simulations, especially in comparison to experiments. In my talk, I start by discussing the notion of "epistemological on par". Recent papers in the debate usually claim either that this relation holds between simulation and experiment or argue against it. I take a closer look at a definition of the notion and discuss which questions have to be answered in order to give an assessment of epistemic privilege. In the second part of my talk, I focus on verification of computer simulations. Morrison and Winsberg have given recent accounts of verification that differ in some significant aspects. Using an example from high-energy physics, I will argue for a distinction between two types of simulations: theory-coherent simulations and data-orientated simulations. This distinction explains the differences in the above-mentioned accounts of verification by Winsberg and Morrison, since they were discussing different types of simulations and the relationship of the simulation to theory and data respectively affects the way the simulation can be verified. In the final part of the talk, I discuss how these different types of verification for the respective types of simulation influence the epistemic status of the simulation, concluding that theory-coherent simulations can under specific circumstances be epistemically on par with experiments and that data-orientated simulations cannot.

10. IDEALIZATION, ABSTRACTION, and MODELS of SCIENCE

2 S	Shech and Gelfert	The Exploratory Role of Idealizations and Limiting Cases in Models					
In this in sc: repres and e studie statist our ca literat	In this article we argue that idealizations and limiting cases in models play an exploratory role in science. Four senses of exploration are presented: exploration of the structure and representational capacities of theory; proof-of-principle demonstrations; potential explanations; and exploring the suitability of target systems. We illustrate our claims through three case studies, including the Aharonov-Bohm effect, the emergence of anyons and fractional quantum statistics, and the Hubbard model of the Mott phase transitions. We end by reflecting on how our case studies and claims compare to accounts of idealization in the philosophy of science						
21 F	Rivat	Effective theories and infinite idealizations: A challenge for scientific realism					
Despi notion (2001 provis minin effect I conce 77 H The p Zollm agains exploi a pos exploi	Despite the increasing importance of effective field theories in modern physics, the general notion of effective theory has received little attention. This is unfortunate because, as Hartmann (2001) suggests, effective theories do not seem to reduce to either phenomenological models or proviso-free theories. They even appear to offer the best of both worlds. After clarifying the minimal structure and the standard interpretation of effective theories, I argue in this talk that effective theories entail that infinite idealizations in physics are not even close to being accurate. I conclude by suggesting that this poses a serious challenge for scientific realism. 77 Holman It's only a model The paper first introduces a few canonical examples of such models (Weisberg-Muldoon, Zollman, and Hong-Page). The paper looks at three classes of critiques that have been levied against formal models. I next argue that an unappreciated function of models is "intellectual exploration." Such a use moves beyond "how possible models" where the effect is known and a possible causal pathway is modeled: I argue that when modelers engage in "intellectual						
the co	oncern implementation remains, co	ncerns about reliability and empirical grounding are not					
74 0	Carrillo and Knuuttila	Macro Level Modeling of Phenomena: A Challenge to the Current Mechanist Discussion					
Simpl explan that al We co impul abstra like m the m	Simplified and abstract models cannot easily be accommodated by the mechanistic account of explanation that is based on detailed description of actual mechanisms. Mechanists have argued that abstract models ought be seen as mechanism sketches, or results of aggregation or omission. We contrast the amply discussed Hodgkin and Huxley model with a recent model of the nerve impulse that cannot properly be addressed as a sketch, or as an aggregative or omissive abstraction. Our analysis of the Heimburg and Jackson model shows that macro-level models like many network models and thermodynamical models are not adequately encompassed under the mechanist umbrella.						

Friday, March 16th 13:30-15:00

11. SYMPOSIUM (AJIST): PREDICTING the UNEXPECTED

Symposium Abstract: Prediction is an important goal shared by many sciences. It is commonly observed that computational models and simulations foster, enlarge, or even create predictive capacities. Such capacities are of particular value when the predicted events or phenomena come as a surprise. For instance, how can scientists detect a Higgs among petabytes of data? Or how

should one classify the risk of a major hurricane hitting the coast of this state? Searching for surprises – simulated surprises might be used to detect or to avoid real ones – often requires us to push models and simulations toward rare events and/or complex interactions. What are sound strategies for stretching and not over-stretching? What are the challenges these strategies have to face and master? Answering these questions is not a matter of computational power alone. Any practical case will require to taking into account modeling strategies and definitions of concepts as well as institutional organization and societal framework. In short, this is a truly interdisciplinary challenge for the studies of science and technology. This symposium will present four contributions that address the challenge from different perspectives. This symposium is sponsored by the Ann Johnson Institute for Science, Technology & Society. The Ann Johnson Institute is dedicated to building diverse communities for the study of technology, medicine and science in past and present societies. It envisions STS in partnership with historical, philosophical, scientific and engineering approaches. The activities we support are designed to contribute to building a better community because at the AJI community is the method.

11a Weinkle

Knowledge Politics and Catastrophe Insurance

JW discusses estimates of hurricane damage and the role it plays for defining risk and assigning insurance policies. She argues that politics is an inherent part of measuring risk and applying insurance.

11b	Merz	Simulation, Images, and the Statistics of Rare Events:
		The Case of the Higgs Search

MM investigates how researchers at the LHC, Cern, operationalize extremely rare events in their search for the Higgs particle. Data analysis, so Merz, decisively relies on the computational and pictorial juxtaposition of "real" and "simulated data", based on multiple models of different kind. 11c Lenhard and Hasse A Reproducibility Crisis in Exact Sciences.

A Reproducibility Crisis in Exact Sciences. Simulation and the Identity of Mathematical Models

JL analyzes recent problems in reproducing simulation results and argues that the main source of these problems is the complicated process of implementing one (and the same) model at different locations. The implementation process might seriously impinge on the identity of a simulation model.

11d	Simpson	Complexity – Tractability – Significance. Finding a
		Balance in Statistical Modeling

DS critically discusses the recent (M&S-based) trend in statistics to utilize computational power for creating and handling more complex models that should cover more rare and exotic cases.

12. MATHEMATICS and **MODELS**

13	Friedman and Krauthausen	Models and Mathematics at the End of the 19th					
		Century					
We	We propose that at the second half of the 19th century, modeling, both in pure mathematics and						
mat	hematical physics, was an activity o	scillating between a mere representation and a creation					
and discovery of a mathematical and physical reality. This can be seen not only with the tradition							
of material mathematical and physical models, but also with Maxwell's discussions on the role							
of t	he "geometric model" in the field	of electricity and magnetism, as well as with Klein's					
theo	oretic models of Riemann surface	s. Modeling was conceptualized both as an act of					
con	concretization and abstraction, prompting mathematical abstraction.						

19 Danne	The Mathematical Language Needed on (but Missing				
	from) Surface Spectral Reflectance Plots				
Most of the surface spectral reflect	ance (SSR) plots deployed by philosophers to debate color				
objectivism are seriously misleadin	g. Non-experts are unlikely to realize that SSR plots purport				
to denote the dispositional property	of a surface to reflect incident light at some efficiency per				
wavelength, but that such SSR v	alues prove operationally untenable when incident pulse				
durations are very short. The proble	m is serious because demarcating a range of durations within				
which SSR values obtain destroys	color objectivism. I argue that appending a mathematical				
disclaimer to SSR plots eliminates	ambiguity between dispositional ascription and operational				
50 Jabida	Equations and models				
Weisbarg and others argue that a	Equations and models				
sentences describing a model. I a	quations are not mathematical models, equations are like				
physical systems. In the qualitative	analysis of ordinary differential equations (ODEs) scientists				
rely on graphical/visual techniques	Using this example and Peirce's and Haugeland's theories				
of representation, I explain the icon	icity of ODEs and show that my account makes better sense				
of the importance of graphical t	echniques in mathematical modeling. Equations are like				
diagrams rather than sentences, and	l it is not a mistake to regard equations as models.				
70 Guralp	Using data models and simulations in testing				
	supernova cosmology				
Supernova methodology is one of the central contenders in empirical cosmology, currently					
aiming to measure the dark energy equation of state parameter. This measurement requires a					
very high precision, compelling the supernova cosmologists to seek ways to improve their					
current statistical methodology. In this paper, I consider two recent projects that offer new					
statistical techniques using Bayes	an models, and show that both of them rely heavily on				
circularity into their argument. For	as I wish to demonstrate these data simulations are produced				
using the very same models that	the new frameworks intend to overcome. I argue that an				
iterative strategy incorporating dist	inct data models may provide a way out of this circularity				
13. The RELATIONSHIP betw	een EXPLANATION and IDEALIZATION				
8 Rice	Universality and Modeling Limiting Behaviors				
Most attempts to justify the use of idealized models to explain appeal to the irrelevance of the					
features distorted and to the accuracy of the model with respect to difference-making (i.e.					
causally relevant) features for the target explanandum. In this paper, I argue for an alternative					
way to justify using idealized models to explain that appeals to universality classes instead of					

accurate representation of difference makers. In support of this alternative view, I contend that cases of modeling limiting behaviors across multiple scientific disciplines are better accommodated by the universality account.

10WayneModel-based explanation and global theory

The goal of this talk is to better understand how scientific explanation functions in the context of idealized models by exploring their connection with the larger scientific fields in which they are embedded. I contend that local models are explanatory only when appropriately related to a global theory. I develop a necessary condition that the explanation and the model must satisfy: no entities in the model that are essential to the explanation are physically impossible according

to the relevant global theory. I apply it to explanations of gravitational waves in general relativity.

29ZachMinimal models, representation, and explanationIn this paper I argue for a pluralistic conception of minimal models while putting forth several
criteria that a minimal model has to satisfy. I present a sketch of a typology of minimal models.
Next, I clarify the distinction between representation and successful representation which is
being conflated on some accounts of minimal models. Given this distinction and that there are
different types of minimal models I argue that we have good reasons to also expect a pluralistic
conception of minimal model explanation. Proving a typology is thus an important step in a
much needed clarification of a number of topics.

30	Khalifa and Sullivan	Idealizations	and	Understanding:	Much	Ado	about
		Nothing?					

Many take idealizations' contributions to scientific understanding to support the claim that that some falsehoods are epistemically valuable. Against these positions, we argue that idealizations qua falsehoods only have non-epistemic value. To establish our thesis, we show that for each of the four leading proposals promoting idealizations' importance to understanding, (a) the idealizations' false components only promote psychological convenience instead of some epistemic good, such as understanding, and (b) only the idealizations' true components have epistemic value. We use models from physics and economics to illustrate our points.

14. TOY MODELS and REPRESENTATION in SCIENTIFIC PRACTICE

41	Nguyen	It's not a game: accurate representation with toy						
		models						
`To	`Toy models' seem to pose a philosophical puzzle: they are ubiquitous in scientific practice, and							
yet	they are so different from the messy	systems out there in the real world that we are ultimately						
inte	rested in. How are we supposed	to learn anything about complex real systems by						
inve	estigating incredibly simple and high	nly idealised models? In this paper I argue that this only						
app	ears problematic if one thinks that ac	ccurate representations have to, in some sense, resemble,						
or t	be similar to, their targets. Once this	s assumption is dropped, and there are good reasons to						
dro	p it, the puzzle dissolves. I argue that	at toy models, and idealised models more generally, can						
be i	inderstood as accurate representation	ns (and by this is I do mean accurate representations, not						
just	that they furnish us with understand	ling about their targets or that they explain in a way that						
doe	s not require accurate representation	n) in much the same way as more complex models are						
und	erstood as accurate representations	s. In doing so I argue that idealisation should not be						
und	erstood as misrepresentation, just so	long as the idealisations are sufficiently well behaved. I						
furt	her suggest that the epistemic status	s of toy models is better understood in terms of a trade-						
off	between precision and generality.							
43	Dethier	Models, Fictions, and Representing Scientific Practice						
In practice, the fiction view of models has been limited to treatments of models in terms of								
Walton's "pretense" view of fiction. As presented, however, this view is incapable of handling								
certain comparisons between models and the world. Such comparisons are essential to our								
abil	ability to learn from models. A technical modification of the fiction viewintroducing pretense							
one	operators on the level of individual predicationsresolves the issue, and has the added benefit							

operators on the level of individual predications---resolves the issue, and has the added benefit of allaying concerns about whether models can actually have the properties ascribed them. Adopting this alternation allows the defender of the fiction view to remain agnostic about metaphysics.

24	Boesch	Representational Licensing in Scale-Models and					
		Ecological Graph Models: Two Case Studies					
Pre	viously, I have argued that understa	anding scientific representation requires understanding					
hov	v representational vehicles are licent	sed: constructed, constrained, and utilized over time by					
the practice for the sake of certain representational aims. To further develop this idea, I will							
exa	examine two case studies of the licensing of representational vehicles, aiming to describe the						
way	y in which the vehicles were licensed	d as representations of their respective targets. The case					
stuc	dies are of a scale model of the Mis	ssissippi River Basin and a graph model in ecology and					
help	p to reveal some of the complex feat	tures that contribute to representational licensing.					

15. MODEL EXPLANATION

	13. WODEL EAI LANATION					
53	Revlett	Demystifying ontic explanation				
We	Wesley Salmon distinguishes epistemic and ontic explanations (1984). Recent literature on					
mo	delling in economics has used this d	listinction to ground a disagreement over causal realism				
and	the role of philosophy of economic	ics. In this paper, I will argue that epistemic and ontic				
exp	lanations are more alike than differe	ent. They are both characterized by how convincing they				
are	to some audience. The differen	ce is the relevant audience. I will show how this				
rec	onceptualization resolves the dispu	te over causal realism and the role of philosophy of				
ecc	nomics.					
68	King	Explanatory Models: A framework for				
	_	instrumentalism				
Phi	losophical accounts of explanation	n make a veridicality requirement on the statements				
fea	turing in explanations. However, the	ese statements are rarely literally true of the world, and				
son	netimes are not even approximately	true of the world. What the statements are literally true				
of i	s some explanatory model. This pape	er presents a framework for explanation in which models				
are	complex abstract objects and the s	tatements that feature in explanans are literally true of				
tho	se models and their possible configu	rations. This restricts the role of realism in explanation,				
but	allows for an instrumentalist approa	ach to models in explanation.				
18	Fumagalli	How 'Thin' Rational Choice Theory Explains Choices				
The	e critics of rational choice theory (R	CT) frequently build on the contrast between so-called				
'thi	ck' and 'thin' interpretations of RC	T to argue that this theory lacks the potential to explain				
the choices of real-world agents. In this paper, I draw on often-cited RCT applications in						
economics and other decision sciences to demonstrate that contra this critique there are at least						
thre	three different senses in which thin RCT can explain real-world agents' choices. I then defend					
this	thesis against the most influential o	bjections put forward by the critics of RCT. In doing so,				
I ez	xplicate the implications of my thes	is for the ongoing philosophical debate concerning the				
exp	planatory potential of RCT and the	e comparative merits of widely endorsed accounts of				
explanation.						
57	Muntean	Aggregating multilevel mechanistic models from Big				
		Data with Machine Learning				
This paper discusses the epistemology of building mechanistic models in data-driven and						
computational-intensive scientific disciplines, when the evidence used is Big Data and the						
computational architecture used in data mining is machine learning (ML). Is mining Big Data						
with ML a proper method of building mechanistic models? If so, how do ML together with Big						
Data qua evidence change the way we explain and predict with mechanistic models? We use						
three concepts: modularity, organization and feedback, and argue that they can be discovered						

through ML in Big Data and that a new type of mechanistic models can emerge from Big Data and ML processing of it. This will allow scientists to aggregate mechanisms at different levels from the deep connections discovered from Big Data. Two types of models are combined accordingly: mechanism modeling and computational modeling and can be used in multi-level modeling. Two concrete examples from biology and cognitive science are shortly discussed as illustration. Presumably, ML and Big Data would be used in the future to reveal multilevel, deep interactions and feedback loops hard (or impossible) to comprehend by the human mind. Here computational tools (ex. ML) will play a central epistemic role. The interdisciplinarity of such multilevel mechanistic models is shortly assessed.

16. HISTORY and PHILOSOPHY of COMPUTER SIMULATIONS

9	Duran	The historical and philosophical roots of computer		
		simulations		
I an	alyze the notion of "computer simul	ation" as found in the engineering and the philosophical		
lite	rature from the early 1960s to the lat	te 1990s with two purposes in mind: one historical, and		
one	philosophical. From the historical	angle, I show the development of the concept through		
diff	erent periods of technological deve	lopment. I particularly focus on interpreting computer		
sim	ulations either as problem-solving	techniques or as descriptions of patterns of behaviour.		
The	e philosophical purpose aims at sl	nowing the consequences resulting from interpreting		
con	nputer simulations in either way.			
35	Hladky	Simulations - Lessons from model theory		
The	ere are two ways to analyse compu	ter simulations. Paul Humphreys proposes a complex		
acc	ount that aims at covering all aspects	of contemporary scientific discourse. Another approach		
is to	b seek a simple theory of models and	d simulations and to deal with the apparent mismatches		
wit	h scientific practice. I will follow th	e second approach, by proposing a theory based on set		
thee	ory and model theory, and show that	t many discrepancies disappear when one distinguishes		
an	ontological, an epistemic and a pra	gmatic level. I will illustrate the applicability and the		
adv	antages of my analysis with a case s	tudy from neuroscience.		
78	Livengood, Briley, and Derringer	Reflecting on Simulating Models of Development		
		under Plausible Gene-Environment Interplay		
In t	his paper, we use simulation work in	behavioral genetics to illustrate and defend a collection		
of c	claims regarding the epistemology o	f simulations and the relationship between simulations		
and	experiments. We argue that simul	ation studies are experiments. We argue that external		
vali	dity is ultimately about similarit	y of causal structure: whenever two systems have		
suff	ficiently similar abstract causal struc	eture, inferences from the behavior of one system to the		
behavior of the other are justified. And we argue that simulations have (at least) three distinct				
modes of operation: (1) for model selection; (2) for guiding new experimental research; and (3)				
for	prediction.	<u> </u>		
45	Haar	Discovery via computer simulation model-building		
The similarities and differences between computer simulation and experiment have been				
debated at length with a primary question being whether through computer simulations we are				
able to make discoveries about the world. Common to this literature is the assumption that the				
computer simulation in question is fully designed or complete. However computer simulations				
are often used to build a model of a target system. The purpose of this paper is to examine a case				
of 1	nodel-building from reservoir engin	eering to demonstrate that (1) we can learn something		
new about the world from computer simulations via model-building and (2) consider different				

theories of evidence on which to evaluate the justification of an existential claim through simulation modeling.

17. REPRESENTATION and **SIMILARITY**

27	Khosrowi	Getting Serious about Shared Features		
Michael Weisberg offers a similarity-based account of the model-world relation, i.e. the relation				
in v	virtue of which successful models a	re successful. Weisberg's main idea is that models are		
similar to targets in virtue of sharing features. I argue that Weisberg fails to give a successful				
analysis of similarity because he does not offer an adequate account of shared features. I consider				
three construals of shared features, as identical, quantitatively sufficiently close, and sufficiently				
similar features, arguing that each of these construals faces significant challenges. I expand on				
how a pluralistic revision of Weisberg's account may help evade these challenges.				
72	Nordmann	Similarity as Evidence		
This paper considers an inferential practice in contemporary technoscience which relies on the				
similarity between models and phenomena and among models. The practice in question takes				
similarity as sufficient evidence for explicability, that is, as evidence for truth of a certain kind:				
The similarity or visual likeness of a recorded phenomenon and its simulation signifies that the				
simulation explains the phenomenon. This would not appear to be a legitimate inference by the				
methodological canon of the philosophy of science. Its warrant turns out to be technological - it				
relies on the construction of a physical system that exhibits the same behavior as the target				
system such that both systems can be said to share the same dynamics.				
37	Greif	Images and Consequents. On Formal and Material		
		Analogy in Computer Simulations		
In light of Hesse's distinction between formal and material analogies in scientific modelling,				

in right of Hesse's distinction between formal and material analogies in scientific modeling, computer simulations in science assume a twofold role. First, they typically are computational realisations of formal models of their target systems, and as such help to determine their empirical correctness. Second, simulations typically comprise an aspect of material modelling, so as to make relevant properties of the target system perceivable. It will be argued that these two aspects are only partly interdependent: As the formal model bears the primary responsibility for representing the target system, and as both the computational core and the empirical rendering of the simulation are underdetermined by that formal model, the matching between these formal and material aspects follows pragmatic criteria.

18. MODELS in CLIMATE SCIENCE

25	Roussos	Against model aggregation		
In the sciences of climate change and hurricane prediction, the outputs of disagreeing models				
are combined in a linear average, weighted according to a skill score. I argue against this				
practice. I show it cannot be justified by the popular analogy with statistical sampling. I then				
present four reasons additional not to aggregate: (1) it discards decision-relevant information,				
(2) it obscures model uncertainty, (3) it presents a misleading aura of "objectivity", and (4)				
averaging is non-ideal and conflicts with Bayesianism. Some of these problems can be				
mitigated, others establish a prima facia case against aggregation, in these sciences.				
62	Pruss	A defense of historical proxy models in climate science		

The use of climate simulations for theory confirmation has been the basis of much discussion among philosophers of science, but to date, little attention has been given to historical proxy models. In this paper, I defend the use of historical proxies. I argue that the sparseness and uncertainty of proxy models is tempered using robust sets of data; that rejecting the auxiliary assumptions underlying proxy models would entail the undermining of highly established theories and is thus unsubstantiated; and that historical data are not inferior to experimental data, but rather that these two types of data are essential complements.

 31
 Lusk and Goldsby
 The Decision-Relevancy of Climate Model Results: Idle Arguments or Idle Dreams?

Frigg et al. (2014) argue that even tiny differences between a complex dynamical model and the true structure of its target system can endanger policy decisions based upon such models. On the other hand, Winsberg and Goodwin suggest that Frigg et al.'s argument is "dangerous" and too hastily undermine large swaths of climate science. This paper seeks to attenuate this debate by establishing an irenic middle position; we find that there is more agreement between sides than it first seems. We establish criteria for decision-relevancy that shows how and where climate models can contribute to policy discussions.